
Bug Hunting and Static Analysis

Red Hat

Onďrej Vaš́ık <ovasik@redhat.com>
and Petr Müller <pmuller@redhat.com>

2011-02-11

Abstract

Basic overview of common error patterns in C/C++, few words
about defensive programming and tools for dynamic analysis.
In second part we will cover what static analysis is, which tools
could be used.



Common Errors in C/C++ Programs

Agenda

1 Common Errors in C/C++ Programs

2 How to Prevent a Failure in Production?

3 Static Analysis

4 Why and how?



Common Errors in C/C++ Programs

Common Errors in C/C++ Programs

dereference of a dangling pointer or NULL pointer

invalid or double free()

buffer overflow

resource leak (memory, file descriptor, etc.)

use of uninitialized value

. . .

dead code

synchronisation problems



How to Prevent a Failure in Production?

Agenda

1 Common Errors in C/C++ Programs

2 How to Prevent a Failure in Production?

3 Static Analysis

4 Why and how?



How to Prevent a Failure in Production?

How to Prevent a Failure in Production?

defensive programming

regression tests, valgrind, etc.

Fedora users

ABRT

. . .

static analysis



How to Prevent a Failure in Production?

Defensive Programming

use compiler protection mechanisms

-D FORTIFY SOURCE=2
stack-protector, PIE/PIC, RELRO, ExecShield
don’t ignore warnings (-Wall -Wextra)

never trust anyone, never assume anything

memory boundaries
check return codes/error codes
use descriptors
respect uid/gids, don’t over escalate privileges
asserts

www.akkadia.org/drepper/defprogramming.pdf



How to Prevent a Failure in Production?

Testing

Levels:

unit code piece testing, usually developer

integration testing interface between parts

system testing the whole stuff together

Purpose:

performance measurements of resource usage

regression finding new bugs after a change

load/stress reliability/robustness/scalability

The theory ain’t clear and unified, so we could argue whole day...



How to Prevent a Failure in Production?

How can you help testing

Of course

Run test suites and investigate results

But also

Submit testcases with your patches where applicable

Use easy measures when you test, like MALLOC PERTURB

Drepper, Ulrich: MALLOC PERTURB :
http://udrepper.livejournal.com/11429.html

http://udrepper.livejournal.com/11429.html


How to Prevent a Failure in Production?

Dynamic Analysis

valgrind

systemtap

oprofile

strace

ltrace

gdb



How to Prevent a Failure in Production?

valgrind

very powerful suite for debugging/profiling, not just for
checking resource leaks(memory, descriptors, ...)

Usage:

easy-to-use tool for searching for memory leaks with detailed
log output
locates exact place of allocating memory which is not freed

How?:

it is highly recommended to have debuginfo packages for
libraries used by the binary you are checking
highest impact have resource leaks in applications running for
long time (e.g. daemons) or in applications working with a lot
of data (long time run)
simple usage to gather a lot of information is:
valgrind -v --leak-check=full <binary> <arguments>
2>myvalgrind.log



How to Prevent a Failure in Production?

strace, ltrace

monitoring utilities showing system/library calls executed
by program and signals/exitcodes it received
Usage:

revealing a place of hanging (e.g. waiting for I/O, timeout)
revealing syscalls/library functions called by program, their
parameters and exit codes

Benefits:
for experienced maintainer a lot of information about the
program run, he could analyze where the problem occured and
fix the issue
no need for debuginfos, a lot of informations gathered
in one log file

How?:
just run program ”under” strace(or ltrace):
strace ./whatever 2>mystrace
or attach strace(or ltrace) to existing process:
strace -p PID 2>mystrace



How to Prevent a Failure in Production?

oprofile, gdb, systemtap

useful dynamic tools covered by other talks on DevConf2011

oprofile:

powerful tool for profiling, finding most called functions
covered by parallel workshop by Ivana Hutǎrová Vǎreková

gdb:

well known debugging tool
covered on Saturday 13:20 in D3 by Jan Kratochv́ıl

SystemTap:

system-wide probe/trace tool
covered today 15:00 in B007 by Petr Müller



Static Analysis

Agenda

1 Common Errors in C/C++ Programs

2 How to Prevent a Failure in Production?

3 Static Analysis

4 Why and how?



Static Analysis

Static Analysis

Already done by the compiler (various warnings)

Dynamic vs. static analysis

Problem with boundaries: dependencies, libraries

False positives



Static Analysis

Static Analysis Techniques

Error patterns (missing break, etc.)

Enhanced type checking

Attributes, annotations

Model checking

Abstract interpretation



Static Analysis

Static Analysis Techniques – Examples (1/2)

FORWARD NULL
If a pointer is checked against NULL, it should be
checked before the pointer is first dereferenced.

RESOURCE LEAK
The last handle of a resource (a piece of allocated
memory, file descriptor, mutex, etc.) is definitely lost
at some point in the program before the resource is
released.

USE AFTER FREE
The program logic allows to access (dereference, free,
. . . ) an already freed memory. Common mistake
in error handling code of libraries.



Static Analysis

Static Analysis Techniques – Examples (2/2)

CHECKED RETURN
If the return value of a particular function is checked
in the vast majority of calls of the function, then the
return value should likely be always checked.

DEAD CODE
If a certain part of source code can never be reached
during execution of the program, it usually implies
that the program does not do what the programmer
intended to do.

http://www-2.cs.cmu.edu/ aldrich/courses/654-sp09/tools/cure-coverity-06.pdf

http://www-2.cs.cmu.edu/~aldrich/courses/654-sp09/tools/cure-coverity-06.pdf


Static Analysis

Example of a Fixed Code Defect

a hidden bug in the cUrl project found by static analysis

http://github.com/bagder/curl/compare/62ef465...7aea2d5

diff --git a/lib/rtsp.c b/lib/rtsp.c

--- a/lib/rtsp.c

+++ b/lib/rtsp.c

@@ -709,7 +709,7 @@

while(*start && ISSPACE(*start))

start++;

- if(!start) {

+ if(!*start) {

failf(data, "Got a blank Session ID");

}

else if(data->set.str[STRING RTSP SESSION ID]) {

http://curl.haxx.se
http://github.com/bagder/curl/compare/62ef465...7aea2d5


Static Analysis

Static Analysis Tools

sparse

Clang Static Analyzer

Coverity

gcc plug-ins

FindBugs (for our Java friends)

Splint (and lints in general)

gazillion more, but of various usefulness



Static Analysis

sparse

Tiny project, c.c.a. 30 000 lines of code

Able to analyze the whole Linux kernel

make CC=cgcc

Provided also as a library, which is available on Fedora

Checks mostly useful for kernel (mixing user and kernel space
pointers)



Static Analysis

clang Static Analyzer

LLVM frontend

1 scan-build ./configure ...

2 scan-build make

3 scan-view



Static Analysis

Coverity

enterprise tool, not freely available

often used to analyse free software

static analysis + abstract interpretation

modular, various checkers (including the examples above)

advanced statistical methods for elimination of false positives



Static Analysis

Coverity – Examples of Fixed Bugs

abrt
missing check of a return value
buffer overflow
memory leak
use of uninitialized value
https://bugzilla.redhat.com/628716

attr
memory leak
double free
logical error
http://lists.gnu.org/archive/html/acl-devel/2010-06/msg00000.html

https://bugzilla.redhat.com/628716
http://lists.gnu.org/archive/html/acl-devel/2010-06/msg00000.html


Static Analysis

Coverity – Examples of Fixed Bugs

libucil
3× resource leak
http://launchpadlibrarian.net/57222837/0001-libucil-fix-some-memory-leaks.patch

libunicap
8× memory error
OOM state handling
http://launchpadlibrarian.net/58529876/0002-libunicap-fix-various-memory-errors.patch

libunicapgtk
invalid use of a local variable
https://bugs.launchpad.net/unicap/+bug/656232

http://launchpadlibrarian.net/57222837/0001-libucil-fix-some-memory-leaks.patch
http://launchpadlibrarian.net/58529876/0002-libunicap-fix-various-memory-errors.patch
https://bugs.launchpad.net/unicap/+bug/656232


Static Analysis

gcc plug-ins

Easy to use (just add a flag to CFLAGS)

No parsing errors

No unrecognized gcc options

One intermediate code used for both analysis and building

Universal gcc plug-ins (DragonEgg, Dehydra, Treehydra, ...)

You can write custom gcc plug-ins



Static Analysis

FindBugs

Finding bugs in Java

Works over bytecode

Designed to avoid false positives



Static Analysis

Splint

Works with C programs

Traditional lint-like tool

Additionally, it works with annotations



Static Analysis

There are more, but

Lots of tools are capable, as there is scientific community around.
The catches are:

Scientists tend to use obscure languages (OCaml, F#)

Scientists tend to publish the unfinished business and move on

But sometimes:

Companies hire scientists for the job (Intel, MS)

Scientists try to get rich (Coverity, Monoidics)



Why and how?

Agenda

1 Common Errors in C/C++ Programs

2 How to Prevent a Failure in Production?

3 Static Analysis

4 Why and how?



Why and how?

Why?

In our opinion:

OS projects: many changes, no or small control

Unwanted side-effects quite likely

Tests are fine, but slow and you need resources

Tests may pass even if program is broken

FV tools are usually quite fast

False positives not much an issue: just changes can be
watched



Why and how?

How to use the tools?

Package them in Fedora

Use them

Tie them into build processes

Improve them

Any ideas?

. . .


	Common Errors in C/C++ Programs
	How to Prevent a Failure in Production?
	Static Analysis
	Why and how?

