
Bugs
why and how to report + related tools overview

Red Hat

Onďrej Vaš́ık

2009-09-11

Abstract

Basic overview of bugs (from command line point of view, no
desktop involved), overview and basic usage of common tools
useful to gather enough informations to fill perfect bug report.

Agenda

1) Bugs - summary of bug types

2) Why to report bugs?

3) How to report bugs?

4) Memory leak detection - valgrind

5) Gathering call traces - ltrace,strace

6) Profiling - oprofile

7) Tracebacks - gdb

8) Networking - tcpdump

Bug types (generally)

a) String errors

b) Crashes

c) Unexpected behaviour

d) Memory leaks

e) Performance impact

f) Security issues

String errors

What?

typos
missing/incorrect documentation
bad/missing translation (just when translation is expected)
bad wording, grammar

Impact

usually low/very low

Action

usually very easy to fix - so don’t hesitate to report it
do not expect update just for such small issues
fix in devel branch and inclusion in next regular update should
be usually enough.

Crashes

What?

segmentation faults
buffer overflows
...

Impact

very high if in common usecase, sometimes could be security

Action

if you have the reproducer, should be always reported
with good reproducer and/or enough data for analysis (strace,
backtrace with installed debuginfos - when possible) is likely it
will get fixed soon

Unexpected behaviour

What?

real ”bugs”, program behaves other way than
documented/expected

Impact

invalid data output, so impact could vary

Action

first, read once more time manpage/FAQ/POSIX, many
of these bug reports are false positives and expected behaviours
if you are sure that it’s a bug, provide reproducer and report it

Memory leaks

What?

process is leaking the memory

Impact

bad for long running applications/deamons
otherwise the impact could be quite low, not worth of fix

Action

use valgrind (described later) and send report about the leak
with corresponding data
Some false positives are possible, so use valgrind only when
you experience growth of memory consumption in time in
some application/process or with increased amount of handled
files/data

Performance impact

What?

program works as expected, but in some cases it gets horribly
slow or consumes too much resources

Impact

waste of system time (and energy)

Action

use profiler to analyze where is the culprit of the impact,
report with reproducer
sometimes can’t be easily fixed, but usually at least
a workaround is found

Security issues

What?

exploits of access rights/privileges, memory safety
race conditions, denial of service, code injection

Impact

could be very high and needs immediate action

Action

if you think you found a security issue (even if you are not
100% sure), report it ASAP as private (with security sensitive
bug checkbox active) bugzilla ticket with keyword ”Security”
DO NOT report/widespread the exploit via mailing list -
security team will assign CVE number and severity and report
it publically once the bug is fixed
http://fedoraproject.org/wiki/Security/Bugs

http://fedoraproject.org/wiki/Security/Bugs

Why to report?

maintainers generally have more packages to maintain and
they have no time to test all the features of the application

therefore they usually don’t know about the issue until you
report it.

reporting means benefit for other users (and even you) in
future

once the bug is fixed, program is better

Don’t be scared about bug reporting, it’s not that hard to
report the bugzilla ticket.

Where to report the bug?

Generally two ways:

contact upstream (on their mailing list, bug tracker)
contact distribution vendor (e.g. Red Hat Bugzilla for Fedora,
Product support for RHEL)

Contacting upstream is better if you are sure that the issue
still exists in latest upstream unmodified version - usually
there are more active guys to fix the issue.

Otherwise it’s better to contact distribution vendor as
the issue may be caused by distro-specific patches.

Reporting via RH Bugzilla in few steps (1/5)

1) Ensure yourself that the issue is not caused by proprietary
drivers or installed things from RPM Fusion or 3rd parties
(especially in the case of desktop bugs, issues with proprietary
drivers are very likely to be closed without deeper
investigation)

2) Check existing bugzillas to prevent duplicate report (try to
use just several keywords as summaries are pretty generic)
https://bugzilla.redhat.com/query.cgi?format=advanced

3) If you don’t have bugzilla account, create new one - valid
email address is required - as the email is visible to the public
for registered users, it is better to use some secondary email

https://bugzilla.redhat.com/query.cgi?format=advanced

Reporting via RH Bugzilla in few steps (2/5)

4) Find propper product:

select your installed distribution from either Fedora or Red Hat
section (EPEL is in Fedora section)
report only against supported versions (generally last two
released versions of Fedora + devel branch)

5) Find propper component:

if the name of the failing/related binary is known, use
combination rpm -qf `which binaryname` to get component
name/version
otherwise it is good to search for similar error report to get
proper component
if you experience SELinux AVC denial in common functionality,
it will likely be incorrect context on some of your
directories/files or problem in the selinux-policy component

Reporting via RH Bugzilla in few steps (3/5)

6) Adjust severity and priority, if you are sure about their
values, otherwise keep defaults

7) Write short summary of your issue

8) Fill the description template
description:

describe your issue, more details are better
if you use different than C locale (check command ‘locale‘),
try to reproduce the issue with C locale as well(LANG=C and
reproducing command)
if not reproducible with C locales, mention your locales in
description

version/release:

use rpm -q <component(s)>

Reporting via RH Bugzilla in few steps (4/5)

8) Fill the description template (continue)
Steps to reproduce:

fill in some easy reproducer
(as easy as possible, try to reduce options and steps)

Actual results and Expected results:

use only if not 100% obvious from description

Attachments:

patches are always welcome (if not 100% obvious from
description and easy to fix bug, not necessary for e.g. typos)
backtrace in the case of crash (more useful with debuginfo
rpms installed)
valgrind reports in the case of memory-leaks
in some cases of unexpected behaviour it’s good to attach
strace/ltrace/tcpdump log (better with C locale, to reduce
string translations)

Reporting via RH Bugzilla in few steps (5/5)

9) Wait for maintainer’s reaction, ping him if there’s no
response within a few weeks (sometimes mail with bugzilla
report gets lost/forgotten/catched by antispam, but pinging
every day in case of low priority bug doesn’t make sense), be
prepared to give more information e.g. about your
configuration

valgrind

very powerful suite for debugging/profiling, not just for
checking memory leaks
Benefits:

easy-to-use tool for searching for memory leaks with detailed
log output
locates exact place of allocating memory which is not freed

Dangers:
sometimes false positives

How?:
it is highly recommended to have debuginfo packages for
libraries used by the binary you are checking (to get useful
output)
highest impact have memory leaks in applications running for
long time (e.g. daemons) or in applications working with a lot
of data (long time run)
simple usage to gather a lot of information is:
valgrind -v --leak-check=full <binary> <arguments>
2>myvalgrind.log

strace

monitoring utility showing system calls executed
by program and signals/exitcodes it received
Usage:

revealing a place of hanging (e.g. waiting for I/O, timeout)
revealing the exit codes of syscalls called by program

Benefits:
for experienced maintainer a lot of information about the
program run, he could analyze where the problem occured and
fix the issue
for common user – it’s not needed to analyze the issue, just
passes traces to maintainer in bug report
no need for debuginfos, a lot of informations gathered
in one log file

How?:
just run program ”under” strace:
strace ./whatever 2>mystrace
or attach strace to existing process:
strace -p PID 2>mystrace

ltrace

monitoring utility (similar to ltrace) showing library calls
made by program

Usage:

quick verification which functions are called and which exit
codes they return

Benefits:

quicker than usage of debugger
works even for executable without debuginfo

How?:

same as in the case of strace
just run program ”under” ltrace:
ltrace ./whatever 2>myltrace
or attach ltrace to existing process:
ltrace -p PID 2>myltrace

oprofile

system-wide profiler for Linux systems, capable of
profiling all running code at low overhead
Usage:

gathering informations about most-expensive systemcalls

Benefits:
useful to find calls most affecting performance

How?:
1) install kernel debuginfo package:
yum install kernel-debuginfo
2) set correct environment:
opcontrol --separate=kernel
--vmlinux=/usr/lib/debug/lib/modules/<kernel-
version>
3) run the test binary and check the results with:
opreport -l /path/to/mybinary
4) pack the results for later usage on another machine:
oparchive -o /var/lib/oprofile/samples/current/

gdb (1/3)

lets you to see what is going on ‘inside’ another program
while it executes

Usage:

debugging of compiled binary(breakpoints, watches)
analyzing core dumps
attaching to already running process

Benefits:

very powerful tool

Negatives:

requires at least basic knowledge of the binary source codes
more helpful on binary with disabled optimalization
up2date sources/debuginfo required for successfull debugging

How:

just run binary inside gdb: gdb <my binary>
and type run <parameters for my binary>

gdb (2/3)

How?: (continue)

or attach to existing process with gdb -p <PID>
or read coredump with gdb -c <coredump file>
set breakpoints by break <file>:<line>/<function> (feel
free to write just abbreviation b, gdb could handle it)
you could set also conditionals for breakpoint:
condition 1 foo=1

program will stop only when value of foo is 1 when breakpoint
1 is reached

set watchpoints by watch/rwatch/awatch <expression> -
stops when expression is written/read/both by program
use info breakpoints to see active breakpoints

gdb (3/3)

How?: (continue)

type next for next line in the current stack level,
type step for next line (dives into functions),
type continue to continue the execution of program,
type print <variable> to check actual variable/structure
values
type backtrace to check call-stack of functions,
type up/down to walk up/down through stack frames
type quit to exit gdb

you could install ddd or nemiver as gui frontends to gdb

tcpdump/wireshark

common packet analyzers for monitoring network activity

tcpdump running from the command line, wireshark with
graphical frontend

Usage:
Monitoring network activity to/from specific machine and/or
port

Benefits:
Useful to gather information where is the issue in network
communication (e.g. packet blocked by firewall)

How?:
simple example for capturing tcp packets that flow over eth1,
port 8081:
tcpdump -w dumpfile -i eth1 tcp port 8081
displaying dumpfile in ”human” readable form by:
tcpdump -nnr dumpfile
more details in manpage

Summary

There is a lot of other topics or details related to that presentation
e.g. systemtap (covered by Petr Műller) for kernel hooks or
automated reporting covered by ABRT presentation. There was no
time to cover details, so if you are interested, check related
documentation.

The end.
Thanks for listening.

